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Abstract The role(s) of protein kinases in the regulation of G protein-dependent activation of phosphatidylinositol-
specific phospholipase C by tumor necrosis factor-alpha was investigated in the osteoblast cell line MC3T3-E1. We have
previously reported the stimulatory effects of tumor necrosis factor-alpha and A1F42, an activator of G proteins, on this
phospholipase pathway documented by a decrease in mass of PI and release of diacylglycerol. In this study, we further
explored the mechanism(s) by which the tumor necrosis factor or A1F42-promoted breakdown of phosphatidylinositol
and the polyphosphoinositides by phospholipase C is regulated. Tumor necrosis factor-alpha was found to elicit a
4–5-fold increase in the formation of [3H]inositol-1,4-phosphate and [3H]inositol-1,4,5-phosphate; and a 36% increase
in [3H]inositol-1-phosphate within 5 min in prelabeled cells. [3H]inositol-4-phosphate, a metabolite of [3H]inositol-1,4-
phosphate and [3H]inositol-1,4,5-phosphate, was found to be the predominant phosphoinositol product of tumor
necrosis factor-alpha and A1F42-activated phospholipase C hydrolysis after 30 min. In addition, the preincubation of
cells with pertussis toxin decreased the tumor necrosis factor-induced release of inositol phosphates by 53%. Inhibitors
of protein kinase C, including Et-18-OMe and H-7, dramatically decreased the formation of [3H]inositol phosphates
stimulated by either tumor necrosis factor-alpha or A1F42 by 90–100% but did not affect basal formation. The activation
of cAMP-dependent protein kinase, or protein kinase A, by the treatment of cells with forskolin or 8-BrcAMP augmented
basal, tumor necrosis factor-alpha and A1F42-induced [3H]inositol phosphate formation. Therefore, we report that
protein kinases can regulate tumor necrosis factor-alpha-initiated signalling at the cell surface in osteoblasts through
effects on the coupling between receptor, G-protein and phosphatidylinositol-specific phospholipase C. J. Cell.
Biochem. 65:198–208. r 1997 Wiley-Liss, Inc.
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Tumor necrosis factor-alpha (TNF-alpha) is a
polypeptide synthesized and secreted by acti-
vated macrophages [Beutler, 1989; Carswell et
al., 1975; Matthews, 1978; Mannel, 1980] as a
mediator of the inflammatory response to in-
jury, infection or malignancy [Old, 1985; Beu-
tler, 1986]. TNF was initially classified by its
proposed role in the hemorrhagic necrosis and
regression of tumors in experimental animals
injected with BCG [Beutler, 1989]. The direct
anti-tumor effects of TNF were later confirmed
by its cytotoxic and cytostatic activities in vitro
against a number of tumor cell lines [7–10]. In
addition to its effects on tumor cells, TNF-alpha
exhibits a diverse range of biological actions on
a variety of cell types that result from its influ-
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ence on growth, differentiation, and function
[for reviews, see Beutler, 1989; Old, 1985; Beu-
tler, 1986; Sherry, 1988; Beutler, 1988]. Although
TNF activates several types of immune cells, such
as neutrophils [Shalaby et al., 1985] monocytes
[Philip, 1986], and eosinophils [Silberstein, 1986],
other effects of TNF diverge from its function(s)
strictlyasa local proinflammatoryhormone.These
include themediation of cachexia or wasting asso-
ciated with chronic diseases [Sherry, 1988], the
inhibition of lipogenic gene expression [Beutler et
al., 1985] and lipoprotein lipase activity [Price et
al., 1986] in adipocytes, stimulation of collagenase
in synovial cells [Dayer et al., 1985] and mitogen-
esis in fibroblasts [Palombella, 1989]. In addition,
TNF exerts prominent metabolic effects in bone
tissue [Beresford, et al., 1984; Gowen et al., 1984;
Krakauer et al., 1985;Bertolini et al., 1986; Sato et
al., 1986], where signals for bone remodeling or
immunological responses to cancer, infection or
autoimmune diseases such as arthritis are of-
ten responsible for accelerated bone turnover.
Recent evidence suggests that activation of

sphingomyelin breakdown to release ceramide
may represent an important signalling path-
way for TNF in multiple cell types [Schutze et
al., 1994]. Despite extensive investigation, no
molecular mechanism underlying the broad
physiological effects of TNF in numerous tis-
sues has been conclusively identified. TNF’s
activity as a biological modifier depends upon
its initial binding to specific high affinity recep-
tors which have been demonstrated to be on the
surface of every type of nucleated cell tested
[Kull, 1988]. These receptors have been identi-
fied on malignantly transformed cells that are
sensitive as well as resistant to the cytotoxic
actions of TNF [Tsujimoto et al., 1985]. More-
over, although the sensitivity to TNF’s actions
can be modified by the down regulation of its
receptors [Unglaub et al., 1987], the cellular
responsiveness to TNF is not directly depen-
dent on either receptor number or affinity [Lewis
et al., 1987]. These observations suggest that
post-receptor mechanisms regulate the cellular
specificity of at least some of TNF’s physiologi-
cal actions. It has been suggested that cAMP
[Zhang et al., 1988] and a pertussis toxin- sensi-
tive G protein [Imamura et al., 1988] each play
a role both in TNF-evoked signalling and biologi-
cal effect. However, no theory has been pro-
posed which explains how a multiplicity of cel-
lular responses for TNF can be transduced by

the limited number of distinctmembrane signal-
ling systems available as control mechanisms.
We have previously demonstrated that the

effects of TNF-alpha on prostaglandin synthe-
sis inMC3T3-E1osteoblastsbyTNFdependsupon
its activation of PI-specific PLC [Rapuano, 1991],
which is an important source of membrane-de-
rived second messengers [Majerus et al., 1986].
The heterogeneity of both the PLC family [Rhee et
al., 1989] and that of the family of G proteins that
regulate this enzyme [Simon et al., 1991] is exten-
sive, and both signal molecules may in turn be
regulated by protein phosphorylation [Rhee et al.,
1989; Simon et al., 1991]. Therefore, the signalling
systems that transduce the biological effects of
TNF can be better understood by elucidating over-
all cellular mechanisms that regulate G protein-
dependent release of second messenger products
of PI-specific PLC. In view of these considerations,
we examined themodulatory influences of protein
kinases A and C on the responsiveness of PI-
specific PLC to activation by TNF-alpha in osteo-
blasts. We show that the TNF-induced activation
of phosphoinositide breakdown by PLC is largely
dependent on a pertussis toxin-sensitive G pro-
tein. We also report that the TNF-alpha receptor-
mediatedgenerationof secondmessengers of cellu-
lar activation can be flexibly regulated bymultiple
pathways of protein phosphorylation. Based on
these findings, this study explores the regulatory
complexity of PI-specific PLC signalling as a basis
for its transduction intoTNF’s effects on osteoblast
function and the remodeling ofmineralized tissue.

METHODS
Materials

Human recombinant TNF-alpha was a gift
from Genentech (San Francisco, CA). Alpha-
MEM (Modified Eagle’s Medium), NCS (new-
born calf serum and FBS (fetal bovine serum)
were obtained from Gibco Laboratories (Grand
Island, NY). H-7 ([1-(5-isoquinolinesulfonyl)-2-
methylpiperazine]), HA1004 ([N-(2-guanidino-
ethyl)-5-isoquinoline-sulfonamide]) was ob-
tained from Seikagaku Kogyo Co. (Tokyo,
Japan). ET-18-OMe (1-O-octadecyl-2-O-methyl-
rac-glycero-3-phosphocholine. 3H2O was pur-
chased from Novabiochem (Switzerland). Per-
tussis toxin, PMA (phorbol 12-myristate,
3-acetate, 4-O-methyl ether), TPA (12-O-tetra-
decanoyl-phorbol-13-acetate), bovine serum al-
bumin (BSA; Fraction V; essentially fatty acid-
free), aluminum chloride, sodium fluoride, and
lithium chloride were purchased from Sigma
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Chemical Co. (St. Louis, MO). Scinti-Verse E
scintillation fluid, ammonium phosphate, and
acetonitrile (HPLC grade) were obtained from
Fisher Scientific (Springfield, NJ).
Tissue culture flasks (75 cm2), six-well (9.4

cm2/well) and 24-well (2.0 cm2/well) tissue cul-
ture plates were obtained from Laboratory Dis-
posable Products (North Haledon, NJ). Flow
Scint IV scintillation fluid for flow scintography
was purchased from Radiomatic Instruments
and Chemical Co. (Meriden, CT). [3H]Arachi-
donic acid, [3H]I-1-P (inositol-1-phosphate),
[3H]I-1,4-P (inositol-1,4-phosphate), [3H]I-4-P
(inositol-4-phosphate) and [3H]I-1,4,5-P (inosi-
tol-1,4,5-phosphate) were supplied by New En-
glandNuclear (Division of Dupont Co.,Wilming-
ton, DE). [3H]Inositol was purchased from
American Radiolabeled Chemicals, Inc. (St.
Louis, MO).

Cell Culture

An osteoblast cell line cloned from mouse
calvaria, MC3T3-E1, was kindly provided by
Dr. M. Kumegawa, Department of Oral
Anatomy, Josai Dental University. Cells were
cultured in 75 cm2 tissue culture flasks contain-
ing alpha-MEM/5% NCS/5% FBS/0.01% strep-
tomycin/100 U/ml. penicillin G. Flasks were
kept in a 5% CO2/95% air incubator at 37°C.

Measurements of Inositol Phosphates

Confluent cells in six-well plates (only a 5%
well-to-well variation in cell number was found
in each culture) were labeled with [3H]inositol
(10 uCi/well) for 24 h in culture medium. Since
cellular phosphoinositide turnover times range
from several hours to minutes (polyphosphoi-
nositides) in medium containing serum (lack of
Go-synchrony), this period is sufficient to achieve
isotopic equilibrium. Cells labeled for 48 h
showed the same levels of the three major
classes of soluble [3H]inositol phosphates (see
below) liberated by activators of PI-specific PLC
(data not shown). After the labeling period,
cells were washed 13 with alpha-MEM and
incubated for 2 h in [3H]inositol-free alpha-
MEM containing culture medium and 20 mM
LiCl3 (to inhibit inositol phosphate phospha-
tase). Modulators were then added for various
periods of time. Forskolin and 8-BrcAMP were
employed at concentrations (10 uM; 0.1–1.0
mM, respectively) that have been generally used
to activate cAMP-dependent protein kinase
(PKA); these concentrations have been found to

be required in order to achieve at least a half-
maximal activation of PKA inMC3T3-E1 osteo-
blasts using the phosphorylation of a specific
PKA substrate Kemptide [Glass et al., 1989] to
measure activity [manuscript in preparation].
HA-1004 was used to inhibit PKA (Ki 5 2.3
uM) [Hikada et al., 1984]; H-7 (Ki 5 6.0 uM)
[Hikada et al., 1984; Kawamoto et al., 1984;
Inagaki et al., 1984] was used to inhibit PKA
and PKC; and Et-18-OMe (Ki 5 12 uM); a spe-
cific inhibitor of protein kinase C with no activ-
ity toward cAMP or cGMP-dependent protein
kinases; [Helfman et al., 1983; Parker et al.,
1987] was employed as a specific inhibitor of
PKC. These compounds were added at concen-
trations that have been demonstrated in vitro
to elicit a 90% or greater decrease in the activ-
ity of their respective target enzymes. The phor-
bol ester tumor promoters TPA and PMA were
used at concentrations that were generally
higher than those demonstrated to activate PKC
in other cells systems. However, these concen-
trations were found to be required in order to
induce a half-maximal or greater stimulation in
membrane-associated PKC activity in
MC3T3-E1 osteoblasts using the phosphoryla-
tion of N-acetylated myelin basic protein, a
specific PKC substrate, to measure activity
[Yasuda et al., 1990]. At the end of the stimula-
tion period, themediawas removed and [3H]ino-
sitol phosphates were extracted as previously
described [Hakeda et al., 1987]. [3H]I-1-P, [3H]I-
4-P, [3H]I-1,4-P, and [3H]I-1,4,5-P were sepa-
rated on HPLC (with retention times of 17,
18.5, 29, and 37 min, respectively) as previ-
ously described [Morgan et al., 1987] using a
220 3 4.6 mm SAX-224 Spheri-10 anion ex-
change column (10 micron pore size; Brownlee
Labs, Santa Clara, CA) and identified by coelu-
tion with authentic radioactive standards. The
radioactivities of separated inositol phosphates
were measured by flow scintography using a
Trace II Radioactivity Flow Monitor (Packard
Instruments Co.; Downer’s Grove, IL) and Flow-
Scint IV scintillation fluid (1:8; v/v).

RESULTS

We have previously found that the treatment
of MC3T3-E1 osteoblasts with TNF-alpha acti-
vates PI-specific PLC, as demonstrated by the
specific breakdown of PI, elevation in the mass
of diacylglycerol and increased turnover of
[32P]orthophosphoric acid and [3H]arachidonic
acid in PI [Rapuano, 1991]. Table I shows that
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TNF-alpha induces a 36% increase in the re-
lease of I-1-P in cells prelabeled with [3H]inosi-
tol within 5 min. of incubation. The stimulated
release of I-1-P parallels the changes in the
mass of PI (decrease) and diacylglycerol (in-
crease) that we have previously demonstrated
within the same period of incubation of
MC3T3-E1 cells with TNF-alpha [Rapuano,
1991]. In the current study, we have also ob-
served a statistically significant increase in the
release of [3H]inositol phosphates from prela-
beled MC3T3-E1 osteoblasts from 5252 6 246
(n 5 3) to 8212 6 406 (n 5 3) cpm/sample (P ,
0.05) within 2 min of exposure to TNF-alpha.
Importantly, the metabolism of polyphosphoin-
sitides by PLC in the same incubates was dem-
onstrated by a simultaneous 4–5-fold increase
in the formation of their main direct hydrolysis
products, I-1, 4-P and I-1,4,5-P (Table I). In
other experiments, TNF-alpha also induced a
3–4-fold increase in the total production of [3H]i-
nositol phosphates in serum-free media from
7814 6 740 (n 5 6) to 27,826 6 3036 (n 5 6)
cpm/sample, although osteoblasts were other-
wise routinely incubated with TNF-alpha in
serum-containing medium (see Methods). We
have also demonstrated in an earlier study that
A1F4

2, which has been shown to activate a G
protein coupled to a PI-specific PLC in fibro-
blasts [Paris, 1987], also stimulates the produc-
tion of [3H]inositol phosphates in MC3T3-E1
osteoblasts [Rapuano, 1994]. We showed that,
in the presence of LiCl3, [3H]inositol phos-
phates released from prelabeled osteoblasts ac-
cumulate with maximal production observed
between 30–60 min (see Table II) [Rapuano,
1994]. Accordingly, in this study, in experi-
ments in which osteoblasts were pretreated

with inhibitors of PI-specific PLC, cells were
subsequently incubated with stimulators for
30–60 min to attain peak levels of liberated
[3H]inositol phosphates in order to accurately
test effects of inhibitors. Under these condi-
tions, as shown in Figure 1 and Table II, the
main metabolite of PI-specific PLC action on
polyphosphoinositides (30 min of TNF incuba-
tion)was I-4-P, a demonstrated breakdownprod-
uct of I-1,4-P and I-1,4,5-P [Morgan et al., 1987].
Table II also reveals that pertussis toxin, which
inhibits someG proteins by promoting the ADP-
ribosylation of a cysteine residue [Casey et al.,
1990; Pang, 1990], blocked 53% of the TNF-
stimulated formation of total inositol phos-
phates. The effects of protein kinase activity on
the responsiveness of PI-specific PLC to stimu-
lation by TNF-alpha or A1F4

2 was investigated
with activators and inhibitors of protein kinase
A and C. Table III demonstrates that the incu-
bation of osteoblasts with phorbol esters, includ-
ing TPA (1 uM) or PMA (20 uM), which activate
cellular protein kinase C [for review see Nishi-
zuka, 1986; Kikkawa, 1986], had no significant
effect on basal formation of [3H]inositol phos-
phates. Despite the lack of effect of phorbol
esters on the activity of PI-specific PLC, we
have found that PMA(20 uM) caused a substan-
tial breakdown of phospholipids and the re-
lease of [3H]arachidonic from prelabeled
MC3T3-E1 phospholipids [Rapuano and Bock-
man, 1996]. In fact, 88% of the arachidonic acid
mobilized by phorbol esters was derived from
the breakdown of PE by PLC and PLA2, clearly
indicating that other phospholipase pathways
distinct from PI-specific PLC are responsive to
stimulation by a phorbol ester in osteoblasts
[Rapuano and Bockman, 1996]. Importantly, in

TABLE I. Effects of TNF-Alpha on PI Breakdown and Formation of Inositol Phosphates
and Diglycerides in MC3T3-E1 Cells*

% control ng/106 cells % control cpm/sample

PI DG I-1-P I-1,4-P I-1,4,5-P

TNFa 83 6 10 (7) 460 6 90 (3)1 136 6 7 (4)2 524 6 206 (3) 369 6 67 (4)2

*MC3T3-E1 osteoblasts were incubated with TNF-alpha (10 nM) for 5 min, lipids were extracted and the mass of PI and DG
was determined by analysis of inorganic phosphorus and HPLC/UV spectroscopy, respectively. The data, expressed as %
control (absence of TNF-alpha) PI or DGmass as shown above, has been previously reported (control levels of PI and DGwere
211 6 19 ng inorganic phosphorus/106 cells and 30 6 5 ng/106 cells, respectively) [Rapuano, 1991]. In other experiments, cells
were prelabeled with [3H]inositol for 24 h, washed, and incubated with medium alone or medium 1 TNF-alpha (10 nM) and
[3H]-labeled I-1-P, I-1,4-P and I-1,4,5-P were extracted 5 min later, separated, and counted following HPLC as described in
Methods. The data is expressed as % control cpm/sample. Values are presented as means 6 SE (n 5 number of independent
experiments).
1Significantly . control (P , 0.01).
2.Control (P , 0.05).
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Fig. 1. HPLC profile of [3H]inositol phosphates after stimulation of MC3T3-E1 cells with TNF-alpha (10 nM) for 30
min (see Results).

TABLE II. Effects of Pertussis Toxin on TNF-Alpha-Induced Formation of [3H]Inositol Phosphates*

cpm/sample

I-1-P I-4-P I-1,4-P

Control 6302 6 1232 (6) 8188 6 1163 (6) 1652 6 200 (9)
TNF (1 nM) 6658 6 612 (6) 9208 6 905 (6) 2810 6 506 (6)5

TNF (10 nM) 14,582 6 1861 (9)1 22,812 6 2602 (6)3 3222 6 379 (9)6

1PT (1 ng/ml) 14,116 6 1786 (8) 19,424 6 4114 (5) 2106 6 203 (7)7

1PT (10 ng/ml) 9758 6 832 (8)2 15,565 6 1367 (6)4 1870 6 259 (9)8

*Cells were prelabeled with [3H]inositol for 24 h, washed, and incubated with or without pertussis toxin (PT) at the indicated
concentrations for 2 h. TNF-alpha was added at the indicated concentrations and [3H]inositol phosphates were extracted 30
min later and analyzed as described in Table I. Pertussis toxin alone (10 ng/ml) did not diminish the basal release of
[3H]inositol phosphates (data not shown). I-4-P is a demonstrated breakdown product of I-1,4-P and I-1,4,5-P [Morgan, 1987].
Levels of inositol-1,4,5-phosphate in this experiment were too low to include in Table. Values are presented as means 6 SE
(n 5 number of independent experiments). Individual measurements represent CPM per sample 5 1 well (of 2.5 million cells
per well; well-to-well variation in cell number was only 5% at confluency—see Methods).
1Significantly . control (P , 0.01).
2,4,7,TNF (P , 0.05).
3.Control (P , 0.001).
5.Control (P , 0.05).
6.Control (P , 0.005).
8,TNF (P , 0.01).
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cells that were treated with TNF-alpha, the
preincubation of osteoblasts with TPA (1 uM)
for 30 min increased TNF-evoked stimulation
in the production of total [3H]inositol phos-
phates by 34 6 7% (n 5 3; significantly greater
than TNF alone; P , 0.05). In other experi-
ments, cells were pretreated with the specific
PKC inhibitor compoundET-18-OMe (seeMeth-
ods) 45 min before the addition of TNF-alpha or

AlF4
2. As shown in Table III, ET-18-OMe inhib-

ited 96 and 100% of the formation of [3H]inosi-
tol phosphates stimulated by TNF and AlF4,
respectively.
Table IV reveals that the the incubation of

osteoblasts with the protein kinase A activator
forskolin (Table IV) raised the basal levels of
mono or polyphosphoinositols 2–3-fold; whereas
forskolin and other protein kinase A agonists

TABLE III. Effects of Protein Kinase CAgonists andAntagonists on Basal and (TNF-Alpha and
ALF4

2)-Stimulated Formation, Respectively, of [3H]Inositol Phosphates*

Condition

cpm/sample

I-1-P I-4-P I-1,4-P I-1,4,5-P

Controla 5984 6 1328 (5) 7056 6 1391 (6) 1384 6 347 (6) 476 6 74 (6)
TPA 8006 6 2086 (3) 9386 6 1258 (3) 844 6 350 (3)
Et-18-OMe 4487 6 594 (6) 5624 6 668 (6) 754 6 90 (4) 535 6 76 (6)
PMA 8742 6 2316 (2) 9930 6 1356 (2) 1692 6 864 (2) —
TNF 12,582 6 1888 (3) 16,516 6 1888 (6)4 2574 6 274 (6)8 1070 6 176 (6)11

1Et-18-OMe 5980 6 1577 (3)1 8500 6 886 (3)5 1824 6 264 (2) 516 6 264 (3)
Controlb 5513 6 940 (8) 6364 6 965 (9) 1392 6 256 (9) 542 6 83 (9)
AlF4

2 b 17,576 6 345 (3)2 24,072 6 245 (3)6 3872 6 511 (3)9 744 6 240 (3)
1Et-18-OMe 4204 6 1218 (3)3 5296 6 1412 (3)7 476 6 160 (3)10 376 6 79 (3)

*Cells were prelabeled with [3H]inositol and washed as described in Table I and incubated with TPA (1 uM), PMA (20 uM),
TNF-alpha (10 nM) for 30 min or NaF (10 mM) 1 AlCl3

2 (10 uM), which forms AlF4
2 as the major species [Godstein, 1964], for

60 min and [3H]inositol phosphates were extracted and analyzed as described in Table I. In some samples, cells were
preincubated with an inhibitor of protein kinase C, Et-18-OMe (50 uM) for 45 min before the addition of TNF-alpha or NaF/
AlCl3

2. Values are presented as means 6 S.E. (n 5 number of independent experiments).
aControl values for experiments with TPA, PMA, or TNF-alpha.
bControls for cells incubated with NaF/AlCl3

2 6 protein kinase inhibitor.
1,5Significantly , TNF (P , 0.05).
2,6,9Significantly . control (P , 0.001).
8.Control (P , 0.05).
3,7,AlF4

2 (P , 0.001).
4Significantly . control (P , 0.005).
10Significantly , AlF4

2 (P , 0.01).
11.Control (P , 0.05).

TABLE IV. Effects of PKAAgonists on TNF-Alpha-Induced Formation of [3H]Inositol Phosphates*

cpm/sample

I-1-P I-4-P I-1,4-P I-1,4,5-P

Control 6083 6 588 (12) 7068 6 579 (12) 1308 6 86 (11) 940 6 196 (12)
TNF 19,114 6 972 (12)1 27,430 6 2227 (12)2 3598 6 511 (12)3 1634 6 211 (15)4

Forskolin 12,136 6 525 (3)5 21,312 6 2156 (3)6 2328 6 240 (3)7 1268 6 109 (3)
TNF 1 Forskolin 35,712 6 2907 (6)8 50,014 6 4132 (6)9 6082 6 900 (6)10 2938 6 104 (6)11

*Cells were prelabeled with [3H]inositol and washed as described inMethods and incubated with TNF-alpha (10 nM). In some
samples, forskolin (50 uM) or 8-BrcAMP (1 mM) was added 20–45 min before the time TNF-alpha was added or before the
start of the control (no TNF) incubation period. [3H]inositol phosphates were extracted 30min after the addition of TNF-alpha
and analyzed as described in Table I. Values are presented as means 6 S.E. (n 5 number of independent experiments).
1–3,5,6Significantly . control (P , 0.001).
4.Control (P , 0.05).
7.Control (P , 0.05).
8.TNF, forskolin or control (P , 0.001).
9.Control or TNF (P , 0.001) and forskolin (P , 0.005).
10.TNF or forskolin (P , 0.05) and control (P , 0.001).
11.TNF (P , 0.005), forskolin or control (P , 0.001).
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increasedAlF4
2-induced [3H]inositol phosphate

formation to the same degree [Rapuano and
Bockman, 1996a]. In addition, the combined
effects of TNF-alpha and forskolin in cotreated
cells were additive for each class of [3H]inositol
phosphates (Table IV). Moreover, preincuba-
tion with the protein kinaseA inhibitor HA1004
blocked 77 and 91%, respectively, of the release
of [3H]phosphoinositols stimulated by TNF-alpha
or the combination of TNF-alpha (10 nM) 1
forskolin (50 uM) (Table V). In contrast, HA1004
inhibited only 30% ofAlF4

2-promoted [3H]inosi-
tol phosphate production (Table V).

DISCUSSION

Althoughwe have previously shown that TNF
induces the breakdown of PI in MC3T3-E1 os-
teoblasts, the present study is the first to dem-
onstrate that the monokine can induce hydroly-
sis of the polyphosphoinositides to release
I-1,4-P and I-1,4,5-P. However, TNF-induced

hydrolysis of polyphosphoinositides ismost dra-
matically shown by the formation of I-4-P (a
breakdown product of I-1,4-P and I-1,4,5-P) [see
Morgan et al., 1987]. That the principal targets
of TNF or AlF4

2-stimulated PLC are PIP and
PIP2 and not PI is supported by the findings
that I-1,4,5-P and I-1,4,5-P are the major phos-
phoinositide breakdown products released af-
ter 5min and I-4-P is themajor product after 30
min (Tables II–V). I-4-P was also found to be
the major phosphoinositol formed in anterior
pituitary cells in response to gonadotropin-
releasing hormone [Morgan et al., 1987]. The
formation of this particular intermediate of poly-
phosphoinositol metabolism may account for
the apparent lack of PI-specific PLC activation
(measured strictly by the appearance of
I-1,4,5-P) by TNF-alpha, despite a G protein
dependency for other actions, observed in one
study [Yanaga et al., 1992]. It is not surprising
that this report perhaps along with other simi-

TABLE V. Effects of a PKA Inhibitor on the Formation of [3H]Inositol
Phosphates Stimulated by AlF4

2 or TNF*

cpm/sample

I-1-P I-4-P I-1,4-P I-1,4,5-P

Controla 5824 6 1016 (6) 6390 6 1090 (6) 1056 6 298 (5) 892 6 308 (6)
HA-1004 7792 6 634 (11) 8360 6 599 (11) 970 6 96 (11) 818 6 103 (10)
TNF 22,354 6 1852 (4)1 29,724 6 4294 (5)5 2140 6 214 (6)11 1176 6 250 (6)
TNF 1 HA-1004 8416 6 2702 (5)2 12,900 6 3786 (5)6 1480 6 176 (6)12 856 6 156 (6)
TNF 1 Forsk. 31,806 6 2818 (9) 46,144 6 3305 (9)7 5136 6 611 (12)13 2246 6 287 (9)16

TNF 1 Forsk./HA-1004 8012 6 1502 (3)3 11,184 6 1001 (3)8 1060 6 210 (3)14 472 6 186 (3)17

Controlb 4848 6 1368 (3) 4880 6 1548 (3) 732 6 104 (3) 672 6 226 (3)
AlF4

2 16,140 6 272 (3)4 22,890 6 968 (3)9 2250 6 346 (4)15 1134 6 226 (4)
AlF4

2 1 HA-1004 13,842 6 1500 (3) 16,016 6 1450 (3)10 1962 6 566 (3) 760 6 194 (3)

*Cells were prelabeled with [3H]inositol and washed as described in Methods, incubated with TNF-alpha (10 nM) or NaF (10
mM) 1 AlCl3

2 (10 uM) for 30 min and [3H]inositol phosphates were extracted and analyzed as described in Table I. In some
samples, HA-1004 was added 45min before the addition of TNF or NaF1AlCl3

2. HA1004 had no effects on basal production of
[3H]phosphoinositols (data not shown). Values are presented as means 6 S.E. (n 5 number of independent experiments).
aControl group for experiments with TNF.
bControl group for experiments with AlF4

2 (see Methods).
1,5,9.Control (P , 0.001).
2,TNF (P , 0.001).
3,TNF 1 forskolin (P , 0.001).
4.Control (P , 0.005).
6,TNF (P , 0.005).
7.TNF (P , 0.025).
8,TNF 1 forskolin (P , 0.001).
10,AlF4

2 (P , 0.05).
11.Control (P , 0.05).
12Significantly , TNF (P , 0.05).
13.TNF (P , 0.01).
14,TNF 1 forskolin (P , 0.01).
15.Control (P , 0.01).
16.TNF (P , 0.025).
17,TNF 1 forskolin (P , 0.01).
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lar studies failed to observe this signalling path-
way for TNF since the (RIA, ELISA, or HPLC-
based) methodologies selected for analysis did
not measure I-4-P. In such studies, an observed
longterm (over a time course of 10–120 min)
activation of other phospholipase pathways,
such as phospholipase A2 (PLA2), by TNF-
alpha, may occur secondarily in response to an
earlier PLC-mediated release of secondmessen-
gers from PI (polyphosphoinositols and diacyl-
glycerol) that activate PLA2 (via increased intra-
cellular calcium flux and membrane trans-
location of protein kinase C). Importantly, our
earlier study demonstrated a TNF-induced
rapid (5 min) decrease in PI mass concomi-
tantly with diacylglycerol formation at a time
when the breakdown of othermajor phospholip-
ids (by any phospholipase pathway) had not
been observed [Rapuano, 1991]. The latter find-
ing argues against a rapid cytotoxic effect of
TNF that would increasemembrane permeabil-
ity to calcium thereby promoting a nonselective
activation of multiple phospholipase pathways.
In view of the considerations and findings dis-
cussed above, the evidence presented here sup-
ports at least a specific activation of PI-specific
PLC by TNF in osteoblasts if not a broader role
for the enzyme in the diverse cellular effects of
TNF. It is also suggested that activation occurs
via a G-protein-dependent receptor-mediated
mechanism, since such a mechanism preferen-
tially stimulates the PLC-mediated hydrolysis
of polyphosphoinositides over phosphatidylino-
sitol [Majerus, 1986].
Two more of our findings in particular sup-

port the role of a G protein in the stimulatory
action of TNF-alpha on phosphoinositide me-
tabolism in osteoblasts. The finding which most
strongly supports the above hypothesis demon-
strated that at least half of TNF’s effects on
phosphoinositol release was sensitive to inhibi-
tion by pertussis toxin, which is specific for G
proteins. Secondly, we have also shown that the
effects of TNF-alpha andAlF4

2, a known activa-
tor of G proteins, are both entirely prevented by
a specific protein kinase C inhibitor. This latter
finding suggests that TNF-alpha and AlF4

2

share a common protein kinase C-dependent
step for the activation of PI-specific PLC. This
final common pathway for activation is not de-
pendent upon a direct (protein kinase C-depen-
dent) modulation of the PLC enzyme, since
neither protein kinase C agonists or antago-
nists altered its basal activity. Neither is the

permissive action of protein kinase C (or the
potentiation by phorbol esters) on TNF’s stimu-
lation of phosphoinositide breakdown due to
direct effects on the cytokine’s receptor, since it
has been shown to be down regulated by pro-
tein kinase C agonists, leading to a decreased
responsiveness to TNF-alpha [Johnson, 1988].
Therefore, we suggest that protein kinase C
regulates the activation of PI-specific PLC by
phosphorylating G proteins that are required
by both TNF-alpha and AlF4

2 for coupling to
the phospholipase enzyme.We have shown that
the incubation of MC3T3-E1 osteoblasts with
TNF-alpha stimulates the cell’s production of
PGE2 [Rapuano, 1991], which can activate PI-
specific PLC via a G protein-dependent mecha-
nism [Tokuda, 1991]. However, the increase in
PGE2 levels clearly lagged behind (2 h; data not
shown) that of inositol phosphates (5min; Table
I), whose production, therefore, was indepen-
dent of prostaglandin synthesis in TNF-alpha-
treated cells. Accordingly, this study is the first
to demonstrate a requirement for G proteins in
the direct coupling between TNF and PI-spe-
cific PLC.
TNF-alpha and AlF4

2 have been shown to
induce cAMP formation in fibroblasts [Zhang et
al., 1988] and MC3T3-E1 osteoblasts [Tokuda
et al., 1993], respectively. Therefore, some of
their effects in this study may derive from the
activation of adenylate cyclase, protein kinase
A and cross-talk with PI-specific PLC coupled
to other cellular receptors through multiple G
proteins. We can not rule out that cAMP plays a
minor role in the actions of AlF4

2, since 30% of
its stimulation of phosphoinositide breakdown
was sensitive to inhibition by HA1004. How-
ever, we have shown that TNF-alpha promotes
the release of [3H]inositol phosphates within 2
min of exposure, before an increase in cAMP
levels was measured in fibroblasts incubated
with TNF-alpha [Zhang et al., 1988]. Moreover,
our other findings have shown that 53% of
TNF’s stimulation of [3H]inositol phosphate for-
mation was blocked by pertussis toxin, whereas
the activation of PI-specific PLC in MC3T3-E1
cells by bradykinin [Yanaga et al., 1991] or
PGE2 [Tokuda et al., 1991] was either insensi-
tive or weakly sensitive (25%), respectively, to
pertussis toxin. In addition, it has been shown
that protein kinase A agonists had no signifi-
cant effect on PGE2-induced phosphoinositol
formation [Kozawa et al., 1992]. We have also
found that PGF2alpha, which we have found is
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the most potent activator of this phospholipase
pathway inMC3T3-E1 cells, is completely resis-
tant to the inhibitory effects of pertussis toxin
[unpublished findings]. Therefore, it is unlikely
that the action of TNF-alpha on PI-specific PLC
results indirectly from cAMP-dependent regula-
tion of G proteins that are coupled to other
membrane receptors for prostaglandins or other
hormones.
Although pertussis toxin generally inactivates

G proteins that are inhibitory to the effector mol-
ecule [Simon et al., 1991], phosphoinositide break-
down can be inhibited by pertussis toxin in a
number of cell types [Brandt et al., 1985; Pfeil-
schifter, 1986;Nakamura,1985;Smithetal., 1985].
Our findings, suggesting that TNF-alpha acti-
vates multiple G proteins (both pertussis toxin-
sensitive and insensitive), that are stimulatory to
PI-specificPLC, havenot beenpreviously reported
in any cell system.Alternatively, our data suggests
also that TNF-alphamay activate a single pertus-
sis toxin-sensitive G protein (which may not be
completely accessible to pertussis toxin in
MC3T3-E1 cells) that is phosphorylated perhaps
at different sites by PKA and PKC. In summary,
this study presents new evidence thatG protein(s)
coupled to a membrane TNF-alpha receptor may
be independently regulated by different pathways
ofproteinphosphorylation.Furthermore, although
earlier studies have provided evidence that G pro-
teins are rapidly phosphorylated [Carlson et al.,
1989] in some cases via cAMP [Gunderson, 1990]
or protein kinase C-mediated [Katada et al., 1985]
mechanisms, no previous investigation has identi-
fied multiple protein kinase pathways regulating
a single receptor/Gprotein-mediated signalling re-
sponse.
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